Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 629
Filtrar
1.
Sci Total Environ ; 928: 172345, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38621537

RESUMO

Fine particulate matter (PM2.5) causes millions of premature deaths each year worldwide. Oxidative potential (OP) has been proposed as a better metric for aerosol health effects than PM2.5 mass concentration alone. In this study, we report for the first time online measurements of PM2.5 OP in wintertime Beijing and surroundings based on a dithiothreitol (DTT) assay. These measurements were combined with co-located PM chemical composition measurements to identify the main source categories of aerosol OP. In addition, we highlight the influence of two distinct pollution events on aerosol OP (spring festival celebrations including fireworks and a severe regional dust storm). Source apportionment coupled with multilinear regression revealed that primary PM and oxygenated organic aerosol (OOA) were both important sources of OP, accounting for 41 ± 12 % and 39 ± 10 % of the OPvDTT (OP normalized by the sampled air volume), respectively. The small remainder was attributed to fireworks and dust, mainly resulting from the two distinct pollution events. During the 3.5-day spring festival period, OPvDTT spiked to 4.9 nmol min-1 m-3 with slightly more contribution from OOA (42 ± 11 %) and less from primary PM (31 ± 15 %). During the dust storm, hourly-averaged PM2.5 peaked at a very high value of 548 µg m-3 due to the dominant presence of dust-laden particles (88 % of total PM2.5). In contrast, only mildly elevated OPvDTT values (up to 1.5 nmol min-1 m-3) were observed during this dust event. This observation indicates that variations in OPvDTT cannot be fully explained using PM2.5 alone; one must also consider the chemical composition of PM2.5 when studying aerosol health effects. Our study highlights the need for continued pollution control strategies to reduce primary PM emissions, and more in-depth investigations into the source origins of OOA, to minimize the health risks associated with PM exposure in Beijing.

2.
J Clin Virol ; 171: 105658, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447459

RESUMO

BACKGROUND: Zoonotic Borna disease virus 1 (BoDV-1) causes fatal encephalitis in humans and animals. Subsequent to the detection of two paediatric cases in a Bavarian municipality in Germany within three years, we conducted an interdisciplinary One Health investigation. We aimed to explore seroprevalence in a local human population with a risk for BoDV-1 exposure as well as viral presence in environmental samples from local sites and BoDV-1 prevalence within the local small mammal population and its natural reservoir, the bicoloured white-toothed shrew (Crocidura leucodon). METHODS: The municipality's adult residents participated in an anonymised sero-epidemiological study. Potential risk factors and clinical symptoms were assessed by an electronic questionnaire. Small mammals, environmental samples and ticks from the municipality were tested for BoDV-1-RNA. Shrew-derived BoDV-1-sequences together with sequences of the two human cases were phylogenetically analysed. RESULTS: In total, 679 citizens participated (response: 41 %), of whom 38 % reported shrews in their living environment and 19 % direct shrew contact. No anti-BoDV-1 antibodies were detected in human samples. BoDV-1-RNA was also undetectable in 38 environmental samples and 336 ticks. Of 220 collected shrews, twelve of 40 C. leucodon (30%) tested BoDV-1-RNA-positive. BoDV-1-sequences from the previously diagnosed two paediatric patients belonged to two different subclades, that were also present in shrews from the municipality. INTERPRETATION: Our data support the interpretation that human BoDV-1 infections are rare even in endemic areas and primarily manifest as severe encephalitis. Sequence analysis linked both previous paediatric human infections to the local shrew population, but indicated independent infection sources. FUNDING: The project was partly financed by funds of the German Federal Ministry of Education and Research (grant numbers: 01KI2005A, 01KI2005C, 01KI1722A, 01KI1722C, 01KI2002 to MaBe, DR, RGU, DT, BS) as well as by the ReForM-A programme of the University Hospital Regensburg (to MaBa) and by funds of the Bavarian State Ministry of Health, Care and Prevention, project "Zoonotic Bornavirus Focal Point Bavaria - ZooBoFo" (to MaBa, MaBe, BS, MMB, DR, PS, RGU).


Assuntos
Doença de Borna , Vírus da Doença de Borna , Encefalite , Saúde Única , Animais , Humanos , Criança , Vírus da Doença de Borna/genética , Doença de Borna/epidemiologia , Musaranhos/genética , Estudos Soroepidemiológicos , RNA Viral/genética , Alemanha/epidemiologia
3.
Vet Microbiol ; 290: 109985, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219410

RESUMO

Bovine viral diarrhea virus (BVDV), one of the most important infectious cattle diseases globally, is being combated in multiple countries. The main source for virus transmission within herds and especially to unaffected cattle farms are life-long persistently infected (PI), immunotolerant animals. Therefore, the early identification of PI calves is a major pillar of disease control programs. In addition, rapid and reliable virus identification is necessary to confirm the causative agent in acute clinical cases. Here, we initiated an international interlaboratory proficiency trial in order to evaluate BVDV detection methods. Four ear notch samples and four sera were provided to the participating veterinary diagnostic laboratories (n = 40). Two of the ear notches and two sera contained BVDV and two ear notches and one serum were negative for pestiviruses. The remaining serum was positive for the ovine border disease virus (BDV). The sample panel was analyzed by an ERNS-based ELISA for antigen detection, diverse real-time RT-PCR (RT-qPCR) assays and/or virus isolation. Occasionally, additional typing of the virus strains was performed by sequencing or specific antibody staining of the obtained cell culture isolates. While the antigen ELISA allowed reliable BVDV diagnostics, infectious virus could be isolated only in just under half of the attempts (43.33%). RT-qPCR enabled the sensitive detection of pestiviruses, though an impact of the extraction method on the resulting quantification cycle values was observed. In general, subsequent typing of the detected virus strains is required to differentiate BVDV from BDV infections. In conclusion, for BVDV identification in clinical cases or in the context of disease control, RT-qPCR methods or ERNS antigen ELISAs should be preferentially used.


Assuntos
Vírus da Doença da Fronteira , Doença das Mucosas por Vírus da Diarreia Viral Bovina , Doenças dos Bovinos , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Pestivirus , Doenças dos Ovinos , Animais , Bovinos , Anticorpos Antivirais , Diarreia/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Ovinos , Carneiro Doméstico
4.
Emerg Infect Dis ; 30(2): 399-401, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270110

RESUMO

We identified a novel lineage of lymphocytic choriomeningitis virus, tentatively named lineage V, in wood mice (Apodemus sylvaticus) from Germany. Wood mouse-derived lymphocytic choriomeningitis virus can be found across a substantially greater range than previously thought. Increased surveillance is needed to determine its geographic range and zoonotic potential.


Assuntos
Vírus da Coriomeningite Linfocítica , Camundongos , Animais , Vírus da Coriomeningite Linfocítica/genética , Alemanha/epidemiologia
5.
PLoS Pathog ; 20(1): e1011880, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271294

RESUMO

BACKGROUND: West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS: We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS: Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION: Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Filogeografia , Europa (Continente)/epidemiologia , Surtos de Doenças
7.
Virus Evol ; 9(2): vead062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028148

RESUMO

Recently, we discovered two novel orthobornaviruses in colubrid and viperid snakes using an in silico data-mining approach. Here, we present the results of a screening of more than 100,000 nucleic acid sequence datasets of fish samples from the Sequence Read Archive (SRA) for potential bornaviral sequences. We discovered the potentially complete genomes of seven bornavirids in datasets from osteichthyans and chondrichthyans. Four of these are likely to represent novel species within the genus Cultervirus, and we propose that one genome represents a novel genus within the family of Bornaviridae. Specifically, we identified sequences of Wǔhàn sharpbelly bornavirus in sequence data from the widely used grass carp liver and kidney cell lines L8824 and CIK, respectively. A complete genome of Murray-Darling carp bornavirus was identified in sequence data from a goldfish (Carassius auratus). The newly discovered little skate bornavirus, identified in the little skate (Leucoraja erinacea) dataset, contained a novel and unusual genomic architecture (N-Vp1-Vp2-X-P-G-M-L), as compared to other bornavirids. Its genome is thought to encode two additional open reading frames (tentatively named Vp1 and Vp2), which appear to represent ancient duplications of the gene encoding the viral glycoprotein (G). The datasets also provided insights into the possible transcriptional gradients of these bornavirids and revealed previously unknown splicing mechanisms.

8.
Front Microbiol ; 14: 1250140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779690

RESUMO

Background: Methanogenic archaea represent a less investigated and likely underestimated part of the intestinal tract microbiome in swine. Aims/Methods: This study aims to elucidate the archaeome structure and function in the porcine intestinal tract of healthy and H1N1 infected swine. We performed multi-omics analysis consisting of 16S rRNA gene profiling, metatranscriptomics and metaproteomics. Results and discussion: We observed a significant increase from 0.48 to 4.50% of archaea in the intestinal tract microbiome along the ileum and colon, dominated by genera Methanobrevibacter and Methanosphaera. Furthermore, in feces of naïve and H1N1 infected swine, we observed significant but minor differences in the occurrence of archaeal phylotypes over the course of an infection experiment. Metatranscriptomic analysis of archaeal mRNAs revealed the major methanogenesis pathways of Methanobrevibacter and Methanosphaera to be hydrogenotrophic and methyl-reducing, respectively. Metaproteomics of archaeal peptides indicated some effects of the H1N1 infection on central metabolism of the gut archaea. Conclusions/Take home message: Finally, this study provides the first multi-omics analysis and high-resolution insights into the structure and function of the porcine intestinal tract archaeome during a non-lethal Influenza A virus infection of the respiratory tract, demonstrating significant alterations in archaeal community composition and central metabolic functions.

9.
Nat Microbiol ; 8(11): 1986-1994, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37798476

RESUMO

The emergence of SARS-CoV-2 has resulted in millions of deaths as a result of COVID-19. Suitable models were missing at the beginning of the pandemic, and studies investigating disease pathogenesis relied on patients who had succumbed to COVID-19. Since then, autopsies of patients have substantially contributed to our understanding of the pathogenesis of COVID-19 and associated major organ complications. Here we summarize how autopsies have complemented experimental studies, mainly in animal models, and how they have facilitated critical knowledge of COVID-19 to improve daily clinical practice and develop therapeutic interventions. Employing advanced histopathologic and molecular genetic methods in post-mortem tissues, the COVID-19 pandemic has highlighted the importance of autopsies for virology research and clinical practice in current and emerging infectious diseases.


Assuntos
COVID-19 , Animais , Humanos , SARS-CoV-2 , Autopsia , Pandemias , Modelos Animais
10.
J Virol ; 97(10): e0107623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37811996

RESUMO

IMPORTANCE: The influenza A virus genome consists of eight distinct viral RNAs (vRNAs) that are typically packaged into a single virion as an octameric complex. How this genome complex is assembled and incorporated into the virion is poorly understood, but previous research suggests a coordinative role for packaging signals present in all vRNAs. Here, we show that disruption of two packaging signals in a model H7N7 influenza A virus results in a mixture of virions with unusual vRNA content, including empty virions, virions with one to four vRNAs, and virions with octameric complexes composed of vRNA duplicates. Our results suggest that (i) the assembly of error-free octameric complexes proceeds through a series of defined vRNA sub-complexes and (ii) virions can bud without incorporating complete octameric complexes.


Assuntos
Vírus da Influenza A Subtipo H7N7 , Vírus da Influenza A , Empacotamento do Genoma Viral , Montagem de Vírus , Genoma Viral , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H7N7/genética , RNA Viral/genética , Vírion/genética
11.
Emerg Microbes Infect ; 12(2): e2257810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37682060

RESUMO

ABSTRACTRecent reports documenting sporadic infections in carnivorous mammals worldwide with highly pathogenic avian influenza virus (HPAIV) H5N1 clade 2.3.4.4b have raised concerns about the potential risk of adaptation to sustained transmission in mammals, including humans. We report H5N1 clade 2.3.4.4b infection of two grey seals (Halichoerus grypus) from coastal waters of The Netherlands and Germany in December 2022 and February 2023, respectively. Histological and immunohistochemical investigations showed in both animals a non-suppurative and necrotising encephalitis with viral antigen restricted to the neuroparenchyma. Whole genome sequencing showed the presence of HPAIV H5N1 clade 2.3.4.4b strains in brain tissue, which were closely related to sympatric avian influenza viruses. Viral RNA was also detected in the lung of the seal from Germany by real-time quantitative PCR. No other organs tested positive. The mammalian adaptation PB2-E627K mutation was identified in approximately 40% of the virus population present in the brain tissue of the German seal. Retrospective screening for nucleoprotein-specific antibodies, of sera collected from 251 seals sampled in this region from 2020 to 2023, did not show evidence of influenza A virus-specific antibodies. Similarly, screening by reverse transcription PCR of tissues of 101 seals that had died along the Dutch coast in the period 2020-2021, did not show evidence of influenza virus infection. Collectively, these results indicate that individual seals are sporadically infected with HPAIV-H5N1 clade 2.3.4.4b, resulting in an encephalitis in the absence of a systemic infection, and with no evidence thus far of onward spread between seals.


Assuntos
Encefalite , Virus da Influenza A Subtipo H5N1 , Infecções por Orthomyxoviridae , Focas Verdadeiras , Animais , Virus da Influenza A Subtipo H5N1/genética , Estudos Retrospectivos
12.
Virus Evol ; 9(2): vead048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744713

RESUMO

Rustrela virus (RusV; species Rubivirus strelense, family Matonaviridae) was discovered in different zoo animal species affected by fatal encephalitis. Simultaneous RusV RNA detection in multiple yellow-necked field mice (Apodemus flavicollis) suggested this rodent as a reservoir of RusV. Here, we investigated 1,264 yellow-necked field mice and sympatric other small mammals from different regions in Germany for RusV RNA using an optimized reverse transcription-quantitative polymerase chain reaction (RT-qPCR) protocol and high-throughput sequencing. The investigation resulted in the detection of RusV RNA exclusively in 50 of 396 (12.6 per cent) yellow-necked field mice but absence in other sympatric species. RT-qPCR-determined tissue distribution of RusV RNA revealed the highest viral loads in the central nervous system, with other tissues being only very rarely affected. The histopathological evaluation did not reveal any hints of encephalitis in the brains of infected animals despite the detection of viral RNA in neurons by in situ hybridization (ISH). The positive association between the body mass of yellow-necked field mice and RusV RNA detection suggests a persistent infection. Phylogenetic analysis of partial E1 and full-genome sequences showed a high diversification with at least four RusV lineages (1A-1D) in northeastern Germany. Moreover, phylogenetic and isolation-by-distance analyses indicated evolutionary processes of RusV mostly in local reservoir populations. A comparison of complete genome sequences from all detected RusV lineages demonstrated a high level of amino acid and nucleotide sequence variability within a part of the p150 peptide of the non-structural polyprotein and its coding sequence, respectively. The location of this region within the RusV genome and its genetic properties were comparable to the hypervariable region of the rubella virus. The broad range of detected RusV spillover hosts in combination with its geographical distribution in northeastern Germany requires the assessment of its zoonotic potential and further analysis of encephalitis cases in mammals. Future studies have to prove a putative co-evolution scenario for RusV in the yellow-necked field mouse reservoir.

13.
Emerg Microbes Infect ; 12(2): 2245916, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37585712

RESUMO

ABSTRACTGlobal and even national genome surveillance approaches do not provide the resolution necessary for rapid and accurate direct response by local public health authorities. Hence, a regional network of microbiological laboratories in collaboration with the health departments of all districts of the German federal state of Mecklenburg-Western Pomerania (M-V) was formed to investigate the regional molecular epidemiology of circulating SARS-CoV-2 lineages between 11/2020 and 03/2022. More than 4750 samples from all M-V counties were sequenced using Illumina and Nanopore technologies. Overall, 3493 (73.5%) sequences fulfilled quality criteria for time-resolved and/or spatially-resolved maximum likelihood phylogenic analyses and k-mean/ median clustering (KMC). We identified 116 different Pangolin virus lineages that can be assigned to 16 Nextstrain clades. The ten most frequently detected virus lineages belonged to B.1.1.7, AY.122, AY.43, BA.1, B.1.617.2, BA.1.1, AY.9.2, AY.4, P.1 and AY.126. Time-resolved phylogenetic analyses showed the occurrence of virus clades as determined worldwide, but with a substantial delay of one to two months. Further spatio-temporal phylogenetic analyses revealed a regional outbreak of a Gamma variant limited to western M-V counties. Finally, KMC elucidated a successive introduction of the various virus lineages into M-V, possibly triggered by vacation periods with increased (inter-) national travel activities. The COVID-19 pandemic in M-V was shaped by a combination of several SARS-CoV-2 introductions, lockdown measures, restrictive quarantine of patients and the lineage specific replication rate. Complementing global and national surveillance, regional surveillance adds value by providing a higher level of surveillance resolution tailored to local health authorities.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Filogenia , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Genômica
14.
J Gen Virol ; 104(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37622664

RESUMO

In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Vírus de RNA de Sentido Negativo , Vírus de RNA , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética
16.
Eur J Immunol ; 53(12): e2250332, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37609807

RESUMO

Knowledge about early immunity to SARS-CoV-2 variants of concern mainly comes from the analysis of human blood. Such data provide limited information about host responses at the site of infection and largely miss the initial events. To gain insights into compartmentalization and the early dynamics of host responses to different SARS-CoV-2 variants, we utilized human angiotensin converting enzyme 2 (hACE2) transgenic mice and tracked immune changes during the first days after infection by RNAseq, multiplex assays, and flow cytometry. Viral challenge infection led to divergent viral loads in the lungs, distinct inflammatory patterns, and innate immune cell accumulation in response to ancestral SARS-CoV-2, Beta (B.1.351) and Delta (B.1.617.2) variant of concern (VOC). Compared to other SARS-CoV-2 variants, infection with Beta (B.1.351) VOC spread promptly to the lungs, leading to increased inflammatory responses. SARS-CoV-2-specific antibodies and T cells developed within the first 7 days postinfection and were required to reduce viral spread and replication. Our studies show that VOCs differentially trigger transcriptional profiles and inflammation. This information contributes to the basic understanding of immune responses immediately postexposure to SARS-CoV-2 and is relevant for developing pan-VOC interventions including prophylactic vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Anticorpos Antivirais , Camundongos Transgênicos , Imunidade
17.
Arch Virol ; 168(9): 234, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608200

RESUMO

A novel ephemerovirus was identified in a Holstein-Friesian cow in the Hefer Valley, Israel, that showed severe and fatal clinical signs resembling an arboviral infection. A sample taken during the acute phase tested negative for important endemic arboviral infectious cattle diseases. However, sequencing from blood revealed the full genome sequence of Hefer Valley virus, which is likely to represent a new species within the genus Ephemerovirus, family Rhabdoviridae. Archived samples from cattle with comparable clinical signs collected in Israel in 2021 and 2022 tested negative for the novel virus, and therefore, the actual distribution of the virus is unknown. As this is a recently identified new viral infection, the viral vector and the prevalence of the virus in the cattle population are still unknown but will be the subject of future investigations.


Assuntos
Ephemerovirus , Feminino , Bovinos , Animais , Israel/epidemiologia , Meio Ambiente
18.
Euro Surveill ; 28(31)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535471

RESUMO

In June 2023, a fatal disease outbreak in cats occurred in Poland. Most cases tested in Poland (29 of 47) were positive for highly pathogenic avian influenza (HPAI) A (H5N1) virus. Genetic analyses revealed clade 2.3.4.4b with point mutations indicative of initial mammalian hosts adaptations. Cat viral sequences were highly similar (n = 21), suggesting a potential common infection source. To investigate possible infection routes, our group tested food samples from affected households. HPAI H5N1 virus was detected in one poultry meat sample.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Gatos , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Polônia/epidemiologia , Aves , Filogenia , Mamíferos
19.
Front Immunol ; 14: 1223260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638020

RESUMO

Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.


Assuntos
COVID-19 , Infecções Respiratórias , Tuberculose , Animais , SARS-CoV-2 , Modelos Animais , Mamíferos
20.
Arch Virol ; 168(9): 224, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561168

RESUMO

This review provides a summary of the recently ratified changes to genus and species nomenclature within the virus family Flaviviridae along with reasons for these changes. First, it was considered that the vernacular terms "flaviviral", "flavivirus", and "flaviviruses" could under certain circumstances be ambiguous due to the same word stem "flavi" in the taxon names Flaviviridae and Flavivirus; these terms could either have referred to all viruses classified in the family Flaviviridae or only to viruses classified in the included genus Flavivirus. To remove this ambiguity, the genus name Flavivirus was changed to Orthoflavivirus by the International Committee on Taxonomy of Viruses (ICTV). Second, all species names in the family were changed to adhere to a newly ICTV-mandated binomial format (e.g., Orthoflavivirus zikaense, Hepacivirus hominis) similar to nomenclature conventions used for species elsewhere in biology. It is important to note, however, that virus names remain unchanged. Here we outline the revised taxonomy of the family Flaviviridae as approved by the ICTV in April 2023.


Assuntos
Flaviviridae , Flavivirus , Flaviviridae/genética , Flavivirus/genética , Hepacivirus , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...